
Chombo Support for Particles

Applied Numerical Algorithms Group
NERSC Division

Lawrence Berkeley National Laboratory
Berkeley, CA

May 1, 2002

Contents

1 Overview of API Design 1

2 Classes for Respresenting Particles (ParticleTools) 1
2.1 Class BinItem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Class BinFab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Class BinFabFactory . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 The List and ListIterator Classes . . . . . . . . . . . . . . . . . . . 5

2.4.1 List Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4.2 ListIterator Functions . . . . . . . . . . . . . . . . . . . . . . . 7

1 Overview of API Design

We make use of templating and inheritance to integrate particles into the existing Chombo
infrastructure.

2 Classes for Respresenting Particles (ParticleTools)

The class BinItem is the basic particle base class from which all other particles can be
defined, and contains the interface through which other classes can interact with it. A
BinFab is derived from BaseFab, and contains a list of BinItems in each grid cell. An
auxiliary container class List<T> has been added to BoxTools to facilitate this 1

1Two points here –

• Neither the Vector or the List classes are documented in the main Chombo Design document

1



2.1 Class BinItem

The BinItem class is the base class for a single particle. It is intended that specific
particle implementations will be contained in classes derived from BinItem. As the most
basic particle type, it contains a position, along with functions for accessing and setting
the position. Any other particle characteristics (charge, velocity, etc) will be part of a
specific particle implementation derived from BinItem. The important member functions
of BinItem are as follows:

• BinItem();

Default constructor

• virtual void define(const RealVect& a_position);

Initialize particle to position a position.

• void setPosition(const RealVect& a_position)

set particle position to a position

• void setPosition(const Real a_position, const int a_dimension)

set position component a dimension to a position

• RealVect& position();

Returns reference to this BinItem’s position, which may be modified.

• const RealVect& position() const;

Returns const reference to this BinItem’s position.

• Real position(const int a_dir) const;

Returns this BinItem’s position component in a dir.

• virtual int size() const;

Returns the size, in number of bytes, of a flat linear representation of the data in
this object.

• virtual void linearOut(void* buf) const;

Write a linear representation of the internal data of this BinItem class; assumes
that sufficient memory for the buffer has already been allocated by the caller.

• virtual void linearIn(void* buf);

Read linear representation of the data needed to define this BinItem class from the
buffer. Any existing data is overwritten.

• Attribution may be an issue here – List is actually a resurrected BoxLib class

2



2.2 Class BinFab

BinFab is a class for holding and sorting particle-type items, derived from BaseFab.
A BinFab<T> is an enhanced BaseFab<List<T> >, where the class <T> must have a
RealVect <T>::position() const function which is used to place items in the appro-
priate bins. The important member functions of BinFab are:

• BinFab()

Default constructor.

• BinFab(const Box& a_domain,

const RealVect& a_mesh_spacing,

const RealVect& a_origin,

const ProblemDomain& a_probdomain);

and

void define(const Box& a_domain,

const RealVect& a_mesh_spacing,

const RealVect& a_origin,

const ProblemDomain& a_probdomain);

Defines this BinFab over the box given by a domain. a mesh spacing and

a origin define the size and location of the bins into which particles will be sorted.
The BinFab defined by this function will be empty (it will contain no particles).

• BinFab(const BinFab& a_src);

Copy constructor – copies contents of a src to newly created BinFab

• virtual void reBin();

Sorts particles in this BinFab into the correct bins. Particles which no longer reside
within any of the bins in this BinFab are eliminated. (It is assumed that if they are
moving to another BinFab, the user will have done this before the reBin function
is called.

• virtual void addItems(const List<T>& a_list);

Items in a list are sorted into bins in this BinFab. Items which are not located
within bins in this BinFabs domain are ignored.

• virtual void addItemsDestructive(List<T>& a_list);

Similar to the addItems function, except as items are placed in this BinFab, they
are removed from a list. When this function returns, a list only contains those

3



items which were not placed in this BinFab. 2.

• virtual void clear()

Return this BinFab to an undefined state.

• virtual int size(const Box& a_box, const Interval& a_comps) const;

This function returns the size, in number of bytes, of a flat representation of the
data in this object contained by the sub-box a box over the components a comps.

• virtual void linearOut(void* buf,

const Box& R,

const Interval& comps) const

Write a linear representation of the internal data of this BinFab class over the sub-
domain R and components comps; assumes that sufficient memory for the buffer
has already been allocated by the caller.

• virtual void linearIn(void* buf,

const Box& R,

const Interval& comps)

Read linear representation of the data needed to define this BinItem class from the
buffer. Any existing data is overwritten.

2.3 Class BinFabFactory

The BinFabFactory class is a factory class to produce BinFab’s, and is derived from the
DataFactory base class. The important functions in this class are:

• BinFabFactory(const RealVect& a_mesh_spacing,

const RealVect& a_origin,

const ProblemDomain& a_domain);

Creates a BinFabFactory and fills internal data with inputs which will be used to
define any BinFab created using the create function.

• virtual BinFab<T>* create(const Box& a_box, int a_ncomps,

const DataIndex& a_dit) const;

Creates a new BinFab object and returns a pointer to it. Responsiblitly for calling
operator ’delete’ on this pointer is passed to the user.

2This function not yet implemented, but it will be once I get a chance. If somebody has a better

name for this function, let me know

4



2.4 The List and ListIterator Classes

The List<T> class is a doubly-linked list container class for objects of type T, while the
ListIterator<T> class allows access to the contents of a List<T>.
The documentation for these classes should eventually go into the Chombo documen-

tation. Another issue is that these classes could possibly stand to be revised to make
them fit in better with the Chombo way of doing things. They are presented here because
they are needed for the ParticleTools classes.

2.4.1 List Functions

Important functions for the List class are:

• List()

Construct an empty List<T>

• List(const List<T> a_rhs)

Copy constructor

• List<T>& operator= (const List<T>& a_rhs);

The assignment operator

• void prepend(const T& a_value);

Adds a copy of the value to the beginning of the List

• void append (const T& value);

Adds a copy of the value to the end of the List<T>.

• void add (const T& value);

Adds a copy of the value to the end of the List<T>.

• void join (const List<T>& src);

Appends a copy of all items in List<T> src to this List<T>.

• void catenate (List<T>& src);

Appends a copy of all items in List<T> src to this List<T>. This differs from
join() in that it unlinks the objects from the List<T> src and glues them to the
end of this List<T>, leaving List<T> src empty. This is more efficient that join()
if src is no longer needed.

• void clear()

Removes all objects from the List<T>.

5



• inline List<T>* copy () const;

Returns a copy of this List<T> on the heap. It is the user’s responsibility to delete
this when no longer needed.

• inline T& firstElement () const;

Returns a reference to the first element in the List<T>.

• inline T& lastElement () const;

Returns a reference to the last element in the List<T>.

• bool includes (const T& value) const;

Returns true if the List<T> contains an object identical to value. Type T must
have an operator==() defined, or be an intrinsic type.

• bool operator== (const List<T>& rhs) const;

Returns true if the this and rhs are memberwise equal; i.e. the two lists are the
same size and each of the elements in the list compare equal. Type T must have
an operator==() defined, or be an intrinsic type.

• bool operator!= (const List<T>& rhs) const;

Returns true if the this and rhs are not equal.

• inline bool isEmpty () const;

Returns true if the List<T> is empty.

• inline bool isNotEmpty () const;

Returns true if the List<T> is not empty.

• int length () const;

Returns the number of objects in the List<T>.

• inline void removeFirst ();

Removes the first element in the List<T>.

• inline void removeLast ();

Removes the last element in the List<T>.

• inline const T& operator[] (const ListIterator<T>& li) const;

Returns reference to object pointed to by the ListIterator<T>.

• inline T& operator[] (const ListIterator<T>& li);

Returns reference to object pointed to by the ListIterator<T>.

6



• void remove (const T& value);

Removes all objects in the List<T> equal to value.

• void remove (const List<T>& lst);

Removes all objects in the List<T> equal to any of the values in lst.

• void remove (ListIterator<T>& lit);

Removes the object pointed to by the ListIterator<T>.

• inline void replace (ListIterator<T>& li,

const T& val);

Replace the value pointed to by the ListIterator<T> by val.

• inline void addAfter (ListIterator<T>& lit,

const T& val);

Insert val into List<T> after the object pointed to by ListIterator<T>.

• inline void addBefore (ListIterator<T>& lit,

const T& val);

Insert val into List<T> before the object pointed to by ListIterator<T>.

• inline ListIterator<T> first () const;

Returns a ListIterator<T> to the first object in this List<T>.

• inline ListIterator<T> last () const;

Returns a ListIterator<T> to the last object in this List<T>.

2.4.2 ListIterator Functions

Important functions for the ListIterator class are:

• inline ListIterator (const List<T>& aList);

Construct a ListIterator<T> to first element of aList.

• inline ListIterator (const ListIterator<T>& rhs);

The copy constructor.

• inline void rewind ();

Reset this ListIterator<T> to point to the first element in the List<T> .

• inline const T& operator() () const;

Return a constant reference to the object in the List<T> currently pointed to by
this ListIterator<T> .

7



• inline const T& operator* () const;

Return a constant reference to the object in the List<T> currently pointed to by
this ListIterator<T> .

• inline operator bool () const;

This is a conversion operator that makes the iterator look like a pointer. This
operator makes it easy to check if the iterator is pointing to an element on the
List<T> . If the iterator has been moved off the List<T> or if the List<T> is
empty, this conversion returns the NULL pointer.

• inline bool operator! () const;

Returns true if ListIterator<T> doesn’t point to any element on the List<T>
.

• inline const T& value () const;

Return a constant reference to the object in the List<T> currently pointed to by
the iterator.

• inline ListIterator<T>& operator++ ();

This is the prefix auto-increment operator. It advances the ListIterator<T> to
point to the next element on the List<T> . It then returns a reference to itself to
allow for chaining with other operators.

• inline ListIterator<T>& operator-- ();

This is the prefix auto-decrement operator. It moves the ListIterator<T> to
point to the previous element on the List<T> . It then returns a reference to itself
to allow for chaining with other operators.

• inline ListIterator<T> operator-- (int);

This is the postfix auto-decrement operator. It moves the ListIterator<T> to
point to the previous element on the List<T> . It then returns a ListIterator<T>
that points to the old element to allow for chaining with other operators.

• inline ListIterator<T> operator++ (int);

This is the postfix auto-increment operator. It advances the ListIterator<T> to
point to the next element on the List<T> . It then returns a ListIterator<T>
that points to the old element to allow for chaining with other operators.

• inline bool operator== (const ListIterator<T>&) const;

Do the two ListIterator<T> s point to the same List<T> and the same element
within the List<T> ?

8



• inline bool operator!= (const ListIterator<T>&) const;

Are the ListIterator<T> s not equal?

References

9


